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Automated prediction of sepsis using temporal convolutional network 
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A B S T R A C T   

Multiple organ failure is the trademark of sepsis. Sepsis occurs when the body’s reaction to infection causes 
injury to its tissues and organs. As a consequence, fluid builds up in the tissues causing organ failure and leading 
to septic shock eventually. Some symptoms of sepsis include fever, arrhythmias, blood vessel leaks, impaired 
clotting, and generalised inflammation. In order to address the limitations in current diagnosis, we have pro-
posed a cost-effective automated diagnostic tool in this study. A deep temporal convolution network has been 
developed for the prediction of sepsis. Septic data was fed to the model and a high accuracy and area under ROC 
curve (AUROC) of 98.8% and 98.0% were achieved respectively, for per time-step metrics. A relatively high 
accuracy and AUROC of 95.5% and 91.0% were also achieved respectively, for per-patient metrics. This is a 
novel study in that it has investigated per time-step metrics, compared to other studies which investigated per- 
patient metrics. Our model has also been evaluated by three validation methods. Thus, the recommended model 
is robust with high accuracy and precision and has the potential to be used as a tool for the prediction of sepsis in 
hospitals.   

1. Introduction 

The body’s immune system is a highly developed response to in-
fections that can be caused by bacteria, viruses, or fungi. However, 
when the immune system is unable to mount a tailored defence against 
infection, it releases an avalanche of inflammatory chemicals in order 
to create a mass effect, which leads to a state of sepsis within the body 
[1]. 

Sepsis is described as an extremely complex and deadly syndrome 
with divergent clinical indications, which altogether create a chal-
lenging environment for detection and treatment [2]. Presently, as per 
the international consensus, sepsis is defined as lethal organ malfunc-
tion, stemming from a disordered host response to an infection [2]. The 
keystone of organ damage results from a disparity between the tissue’s 

metabolic needs, and the subsequent hypoperfusion state that arises 
from the body’s inflammatory state. While inflammation-induced car-
diac malfunction and systemic blood volume redistribution play a key 
role in this, it is exacerbated by oxygen use from the damaged tissue [3]. 

Angiopoietins are a subset of a family of vascular growth factors. The 
imbalance of angiopoietin-tyrosine kinase alongside immunoglobulin- 
like ligand-receptor system (Ang-tie), which is responsible for cardio-
vascular and lymphatic development, is of particular interest in sepsis 
research [2]. The improved expression of Ang-2 and the impediment of 
Ang-1 obstructs the Tie-2 receptor and proliferates vascular perme-
ability, causing tissue edema [4]. A high serum Ang-2/Ang-1 ratio in 
turn results in heightened severity in organ malfunction and increased 
mortality, even in early sepsis [5]. The organs often damaged due to 
sepsis include the kidneys, lungs, liver, heart, central nervous 
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hematologic systems [2]. 
The infections that contribute to sepsis are resistant to antibiotics, 

leading to quick deterioration of health conditions [6]. The symptoms of 
sepsis include fever, irregular heart rate, blood vessel leaks, inflamma-
tion and clotting difficulties [7]. Sepsis can be classified as sepsis 1, 2 or 

3. Sepsis 1 is known to occur as a consequence of the systemic inflam-
matory response to known or suspected infections. Sepsis 2 is diagnosed 
based on inflammatory, hemodynamic, organ maladies and tissue 
perfusion parameters, while sepsis 3 is diagnosed based on 
life-threatening malady of the organ due to the imbalanced host 
response to infection [8]. Fig. 1 encapsulates causes and consequences of 
sepsis. Sepsis afflicts more than 30 million people globally, causing 
about 6 million deaths yearly [9]. 

Early detection and timely management of sepsis are crucial to lower 
the mortality and morbidity rates. Presently, blood cultures are exam-
ined and biomarkers such as procalcitonin(PCT), C-reactive protein 
(CRP), cell-free DNA(cfDNA) are used as the gold standard for early 
sepsis diagnosis [10,11]. However, using blood cultures as a diagnostic 
tool exhibit several shortcomings. Besides being invasive, biomarkers 
for sepsis have been reported to be lacking sensitivity or specificity for 
the diagnosis or even prediction of sepsis, owing to the overlap that 
exists between infectious and inflammatory conditions [12]. Multi-
marker systems that were developed to address these were found to be 
costly and integration into clinical algorithms is an arduous task. Hence, 
a cost-effective automated diagnostic tool for the early identification of 
sepsis is important beyond measure, as this decreases the time for 
advanced diagnostics and paves the way for timely treatment [13]. 

Conventional machine learning techniques have been explored by 
some authors for the prediction of sepsis. Henry et al. [14], Umscheid 

Fig. 1. Causes and consequences of sepsis.  

Table 1 
Summarized studies for the prediction of sepsis using deep learning methods.  

Authors Techniques Database/participants Results 

Kam et al. [36], 2017  • Insight model  
• Feedforward model  
• 20 features  
• LSTM model 

MIMIC-II(version 3) database: 
350 patients 

LSTM model: 
AUROC: 92.9% 
Insight model: 
AUROC: 88.7% 
Sensitivity: 91% 

Futoma et al. [37], 2017  • Multitask Gaussian process recurrent neural 
network(MGP-RNN)  

• RNN classifier 

University health system, HER database: 
49 312 patients 

MGP-RNN outperforms GP-RNN baselines in the 
classification of sepsis. 

Kamaleswaran et al. 
[38], 2018  

• Logistic regression classifier  
• Random forest classifier  
• Deep CNN model 

Le Bonheur Children’s Hospital: 
Sepsis: 18 patients 
Normal: 473 subjects 

Logistic regression: (2–8 h before sepsis) 
ACCURACY: 82.8% 
SPECIFICITY: 82.7% 
SENSITIVITY:85% 

Fagerstrom et al. [39], 
2019  

• LiSep LSTM model  
• 6-fold validation 

MIMIC-II database: 
About 59 000 septic shock patients 

AUROC: 83.06% 

Li et al. [40], 2019  • Convolutional neural network  
• Recurrent neural network  
• Ensemble bagging(combination of both models) 

Physionet Challenge 2019 database: 
40 336 data(2932 septic records) 

ACCURACY: 92.7% 
AUROC: 96.4% 
AUPRC: 38.3% 

Scherpf et al. [41], 2019  • Recurrent neural network  
• 4 fold-validation  
• Gated recurrent unit  
• 10 parameters 

MIMIC-III database: 
Patients: 46520 

AUROC: 81% 
Sensitivity: 85% 
Specificity: 67% 

Moor et al. [42], 2019  • Multitask Gaussian Process Temporal 
Convolutional Network (MGP-TCN)  

• Dynamic time-warping k-nearest neighbour 
classifier  

• 3 iterations of random splitting 

MIMIC-III database: 
Sepsis patients: 570 
Normal : 5618 subjects 

AUPRC: 40% 
AUROC: 86% 
(7 hours before onset) 

Lauritsen et al. [43], 
2020  

• Convolutional + long short-term memory 
networks  

• 5-fold cross validation 

Electronic health records from multiple 
Danish hospitals 
Full dataset: 52 229 patients 
Vital signs: 3129 

AUROC: 85.6%(3 h before sepsis onset) 

Bedoya et al. [44], 2020  • Multi-output gaussian processes recurrent neural 
network  

• Internal validation  
• Temporal validation 

Electronic health records from 
quaternary academic hospital: 
Training and internal validation: 42979 
encounters 
Temporal validation: 39 786 encounters 

AUROC: 88.0% 

This study  • Gaussian Process Regression  
• Temporal convolutional network  
• 40 features per record  
• 10-fold cross validation 

Beth Israel Deaconess Medical Center: 
1790 septic records 
Emory University Hospital: 
1142 septic records 

Per-patient metrics: 
ACCURACY: 95.5% 
AUROC: 91.0% 
AUPRC: 68.0% 
Per-timestep metrics 
ACCURACY: 98.8% 
AUROC: 98.0% 
AUPRC: 65.0% 
UTILITY: 43.0%  
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et al. [15], Delahanty et al. [16] and Lake et al. [17] investigated early 
warning scoring systems by building models using machine learning 
techniques. Calvert et al. [18], Mao et al. [19] and Desautels et al. [20], 
explored the insight algorithm to develop the prediction models. Mani 
et al. [21], Horng et al. [22] and Gultepe et al. [23] explored the support 
vector machine classifier amongst other models. Nemati et al. [24] and 
Shashikumar et al. [25,26] studied electronic medical record features. 
Other models such as random forest classifier, composite mixture and 
Rusboost classifiers were developed by Taylor et al. [27], Mayhew et al. 
[28] and Patidar et al. [29] respectively. Conventional machine learning 
techniques require the manual extraction and selection of features, and 
this has been proven to be cumbersome and tedious. The significant 
features are also selected by iterative trial and error, hence the process is 
time-consuming. Additionally, some of the studies discussed above have 
only generated qualitative results. 

Feature extraction and selection processes are naturally automated 
in deep learning techniques, easing classifications, hence deep learning 
models are increasingly being employed in the detection of various 
diseases [30–35]. In this study, we have employed the temporal con-
volutional network for the prediction of sepsis. Our proposed method 
not only predicts sepsis rapidly, but also with high accuracy. More de-
tails about our work are discussed in the subsequent sections; section 2 
discusses the methodology, sections 3 and 4 discuss the results and 
comparisons with other works respectively, while section 5 concludes 
the paper with recommendations for future work. Table 1 details the 
summarized studies for sepsis prediction using deep learning methods. 

2. Methodology 

2.1. Data acquired and pre-processing method 

The data used is the open source dataset released for the PhysioNet 
Computing in Cardiology 2019 Challenge [45]. This contains data from 
2 hospitals: Beth Israel Deaconess Medical Center (hospital system A) 
and Emory University Hospital (hospital system B) which contain 1790 
and 1142 septic records respectively. The data obtained were based on 
sepsis-3 criteria and each patient’s record comprised 40 features: 8 vital 
signs, 26 laboratory measurements, and 6 demographic variables, 
recorded hourly. The Gaussian Process Regression (GPR) [46] was used 
to predict the distribution of possible values for each feature that 

contained entries, to ease the problem of missing values. As GPR gen-
erates a distribution of values as compared to filling in the missing 
values like other interpolation methods, this comes with the added 
advantage of being able to sample this distribution during training time, 
as it yields varied values according to the distribution. The Radial Basis 
Function (RBF) kernel combined with a White Noise kernel [47] was 
then used to produce the covariance matrix which describes the distri-
bution of values. Besides filling in missing data, this step also creates 
noisy data, which helps to improve generalisation of the model used 
[47]. Any NaN(not a number) values left after this process were subse-
quently set to 0. 

2.2. Temporal convolutional neural network 

Deep learning models are neural networks that consist of a large 
number of layers and parameters that aid in classification tasks [48]. 
Deep models ranging from the convolutional neural networks(CNN) 
[49] to the long short-term memory(LSTM) [50] and autoencoders [51] 
are frequently used for the detection of arrhythmia [30,31,52] schizo-
phrenia [32], congestive heart failure [33] among other maladies. In 
this study, a temporal convolutional network(TCN) [53] was employed. 
TCN is a convolutional network which convolves over the time domain. 
In TCN, calculations are conducted in such a way that each time-step is 
updated concurrently [54]. A temporal convolutional network is a 
convolutional network which convolves over the time domain. As the 
filters in these convolutions do not have access to timesteps in the future, 
dilated convolutions were implemented wherein a convolution filter is 
applied over a larger receptive field than its defined input size by 
skipping inputs from a given step size. These dilated convolutional 
layers are then stacked on top of each other with increasing dilation to 
increase the size of the receptive field exponentially [55]. Fig. 2 repre-
sents the dilated convolution layers used in our model. 

In this study, the TCN was specifically chosen as a replacement/ 
alternative of existing recurrent neural networks(RNN)/gated recur-
rent unit(GRU) architectures to improve training hardware re-
quirements. TCNs retain benefits from RNNs such as variable length 
inputs via sliding of the 1-dimensional convolutional kernel windows 
and are less memory intensive than GRU/LSTM networks especially 
when the data length gets larger. The hyperparameters(as shown in 
Table 2) were tuned with a grid search. The grid can be described 
with 3 values: A minimum, maximum and interval. For maximum 
learning rate and weight decay, the grid values are incremented 
exponentially (eg. 1e-5, 1e-4.5, 1e-4, etc). Residual blocks are known 
to benefit deep learning models, as such, nine residual block were 
stacked, summing the output together with the output of the skip 
connections, followed by a linear transform on the sum. This output 
was then fed to a sigmoid activation function. Batch normalisation was 
done and dropout layers were added to prevent overfitting of the 
model. Fig. 3a and b present a typical residual block and the TCN 
architecture used in our study, respectively. 

Fig. 2. Dilated convolution layers.  

Table 2 
Tuning of hyperparameters with grid search.   

Min Max Interval Final value 

Maximum learning rate 1e-5 1e0 e0.005 3e-4 
Weight decay 0, 1e-5 3e-2 e0.5 1e-3 
Minimum momentum 0.80 1.00 0.05 0.85 
Maximum momentum 0.80 1.00 0.05 0.95  
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2.3. Training, testing and validation of model 

The predicted values for each patient are labels that signify the onset 
of sepsis at each timestep. These labels are 1, starting from the onset of 
sepsis and throughout the sepsis episode and are 0 otherwise. The data 
was shifted 6 h into the past to train the proposed model to predict the 
onset of sepsis by 6 h. The model was trained over 20 epochs using the 
Python module fastai’s implementation of the one cycle policy in Refs. 
[56], which is a variant of the cyclical learning rates introduced in 

Ref. [57]. The optimal maximum learning rate and weight decay is 
found using the learning rate finder in Smith et al.‘s work in Ref. [46] 
and a grid search over a range of values for weight decay. 10-fold 
stratified cross validation [58] was used to evaluate the model 
wherein 90% of the data was used for training and 10% for validation at 
each fold. Area under the receiver operating characteristics (AUROC) 
and area under the precision-recall curve (AURPC) values were also 
computed to validate the model. The metrics calculated for each fold 
over the validation set were split into 2 categories: per-patient metrics, 
which are calculated once per patient in the validation set, which gives 
rise to a binary classification; and per-timestep metrics, which are 
calculated at each timestep and include a utility function as defined in 
Ref. [45] which penalises a model based on its sensitivity, as well as how 
early or late its prediction of sepsis onset is. 

3. Results 

Tables 2a and 2b present the results of the classification based on per- 
patient and per time-step metrices respectively. It is apparent that the 
highest accuracy and AUROC of 98.8% and 98.0% were achieved 
respectively, for the per time-step metrics. A relatively high accuracy 
and AUROC of 95.5% and 91.0% were achieved respectively, for the per- 
patient metrics. When the sensitivity of the proposed model was set to 
85%, to compare with work done by other authors who set their sensi-
tivity values between 80 and 90%, our model achieved accuracy and 
AUROC values of 80% and 91% respectively. 

Fig. 3. (a) Temporal Residual Block and (b) Temporal Convolutional Network architecture.  

Table 2a 
Classification results based on per-patient metrics.  

Accuracy(%) Sensitivity(%) Specificity(%) AUROC AUPRC 

95.5 57.1 98.5 91.0 68.0 
80.0 85.0 79.6 91.0 68.0  

Table 2b 
Classification results based on per time-step metrics.  

Accuracy(%) Utility(%) AUROC AUPRC 

98.8 43.0 98.0 65.0  
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Fig. 4. (a) ROC curve and (b) Precision Recall curve for each patient.  
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4. Discussion 

From Table 1, it is worth noting that our proposed model has 
achieved the highest classification accuracy of 98.8% for the per time- 
step metrics, followed by 95.5% for the per-patient metrics. The study 
is novel because we have investigated and reported results on two 
metrices, while the other studies reported only on per-patient metrics. 
A higher utility score of 43.0% was also achieved, wherein the entry 
for the Physionet 2019 competition only received a normalised utility 
score of 23.7% for the entire dataset [40]. Since the competition en-
tries were tested on a hidden dataset, wherein there has been no 

updates if these data is available for other researchers’ testing, we have 
compared our results with those of the competition, based on k-fold 
validation techniques, used in both studies. Comparing the CNN model, 
logistic regression and random forest classifiers, Kamaleswaran et al. 
[38] reported the highest classification accuracy of 82.8% achieved 
with the logistic regression classifier, which is a lower accuracy than 
ours. 

From Table 1 it is clear that Moor et al [42] were the first group to 
have employed the TCN model for the prediction of sepsis. While we 
have also explored the TCN model similar to Moor et al [42], the two 
works discuss different methods used. Moor et al [42] proposed the 

Fig. 4. (continued). 
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Fig. 5. (a) Training loss vs epoch graph and (b)Validation loss vs epoch graph.  
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Multitask Gaussian Process(MGP) TCN classifier and also employed the 
Dynamic Time Warping k-nearest neighbour classifier as an additional 
comparison partner while we only explored the GPR-TCN model. The 
datasets used are also different wherein Moor et al [42] had used the 
MIMIC III database alone, while we had used data from both the MIMIC 
III database and Emory University Hospital. Furthermore, we have 
employed 10-fold cross validation while they have employed three it-
erations of random splitting (Monte Carlo cross validation). It is evident 
that we had obtained higher AUPRC values of 68% and 65% for per--
patient and per-timestep metrics respectively as compared to that ach-
ieved by Moor et al [42] for the classification task. Nevertheless, we 
observe that the two experimental scenarios are different: we follow the 
online (i.e. time-step wise) prediction task of the PhysioNet Computing 
in Cardiology 2019 Challenge [45], while Moor et al. performed an early 
prediction analysis to evaluate different prediction horizons in hours 
before sepsis onset. As the second type involved a temporal case-control 
alignment (where large parts of the controls data are discarded for 
making the task harder but more realistic), a direct comparison of the 
resulting performance measures is not applicable. Kam et al. [36] ach-
ieved a higher AUROC value of 92.9% as compared to 91% in our study. 
However, only a small dataset of 350 patients were used to train the 
model in this study, larger datasets are needed to train deep learning 
models. Li et al. [40] also used the same dataset as our study and ach-
ieved a higher AUROC value of 96.4%. Although the AUROC value was 
higher, a lower AURPC of 38.3% was reported, as compared to our study 
which achieved AUROC value of 68%. Similar to our study, the dataset 
used in this study was imbalanced. ROC plots do not reflect the true 
classification performance of a classifier wherein imbalanced datasets 
are used, as this would result in a misleading interpretation of the 
model’s sensitivity [59]. PRC plots, in contrast, provide a more accurate 
prediction of future classification performance of the model, as a frac-
tion of true positives amongst positive predictions is computed in these 
plots [59]. Hence, as an alternative to ROC plots, PRC is known to be 
robust even under imbalanced datasets [60,61]. Thus, AUPRC is more 
representative of the model’s performance instead of AUROC. So, with 
the higher AUPRC obtained, our model still performed better than that 
of Li et al. [40]. Futoma et al. [37] reported on qualitative results while 
the remaining studies obtained lower AUROC values. Our model has also 
been validated by three techniques; 10-fold validation, AUROC and 
AUPRC, hence it is robust, besting the other models discussed in Table 1. 

Fig. 4a and b show the AUROC and AUPRC plots derived from our 
study. From Fig. 4a, it is apparent that the mean ROC of our proposed 
model has a true positive rate of about 1.0 and a false positive rate of 
about 0.0. From Fig. 4b, it is noteworthy that the mean PRC of our model 
has a precision value of about 1.0 and recall value less than 1.0. 
Although our model is not the best(the best model has both precision 
and recall values close to 1.0), it can be considered as a better model as 
compared to those in Table 1. Fig. 4a and b clearly indicate that our 
model is highly accurate to be implemented for sepsis prediction in the 
hospitals. The ROC and PRC plots obtained by our model for per-patient 
metrics are depicted in Fig. 4c and d respectively(Please see the ap-
pendix section). Fig. 5a and b depict the training and validation loss 
versus epoch graphs respectively. It is observable from both graphs that 
the loss decreases across the epochs as the model learns the data, hence 
it can be seen that the model performs better, as the training continues. 
The closer the loss value is to 0, the better the model is performing. 
There are some benefits and limitations of our study to be discussed 
below. 

4.1. Benefits  

1. Sizeable data can be trained by the model.  
2. The model has been validated by 3 techniques, hence it is very 

robust. 
3. The dataset is not localized and contains data from 2 different clin-

ical settings.  
4. Feature extraction and selection processes can be done automatically 

by the model for any classification tasks. 

4.2. Limitations  

1. GPR process is time-consuming, hence pre-processing and training 
phases may take longer than traditional pre-processing.  

2. GPR process produces output with high variance and noise when the 
number of samples in the feature are low.  

3. GPR is also very computationally expensive, both during the 
regression process; where the distribution of points is estimated and 
the sampling process; where the estimated distribution is sampled 
before the data is fed into the model.  

4. GPR sampling method, which results in a lot more data points being 
produced than is realistically possible in a hospital environment. 
This can lead to the model potentially performing sub-par when 
given unprocessed data although this is yet to be tested. 

5. Conclusion and future work 

Sepsis is a condition that arises when one’s immune response re-
leases large amounts of inflammatory chemicals, to fight back an 
infection caused by pathogens. The release of large amounts of 
chemicals causes fluid to build up in one’s tissues, leading to organ 
dysfunction, eventually leading to septic shock. Prediction is more 
imperative than detection, to prevent sepsis altogether and the lasting 
effects this can have on the body. Deep learning models are increas-
ingly taking over conventional machine learning techniques. In this 
study, we have employed a deep temporal convolution network for the 
prediction of sepsis. Acquired data was fed to the model and a high 
accuracy and AUROC of 98.8% and 98.0% were achieved respectively, 
for the per time-step metrics. A relatively high accuracy and AUROC of 
95.5% and 91.0% were achieved respectively, for the per-patient 
metrics. Our model has been evaluated by three validation methods; 
10-fold, AUROC and AUPRC. Our experiments have shown that our 
proposed model is an effective automated diagnostic tool, of high ac-
curacy and precision, that can be used to predict sepsis. 

For our future work, we hope to improve the performance of our 
model by training it using a larger data set as compared to the present, 
with more varied data comprising sepsis 1,2 and 3 criteria. With more 
and varied data, the model is bound to learn better and hence classify 
with a higher accuracy. Also, in future, we intend to test our model 
using new unknown database and evaluate the performance of the 
model. Attention-based neural networks can be a solution to automatic 
feature extraction and selection. It would also be interesting to observe 
how our proposed model performs on more authentic, varied clinical 
settings. 
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Appendix

Fig. 4. (c) ROC curve and (d) Precision Recall curve for each time step.1.  
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